Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Blood ; 138:1756, 2021.
Article in English | EMBASE | ID: covidwho-1582193

ABSTRACT

Background: Brexucabtagene autoleucel (brexu-cel) is the first CD19 chimeric antigen receptor T-cell (CAR T) therapy approved for use in patients (pts) with relapsed mantle cell lymphoma (MCL). The ZUMA-2 trial demonstrated that brexu-cel induces durable remissions in these pts with an ORR of 85% (59% CR), estimated 12-month PFS rate of 61%, and similar toxicity profile to other CAR T therapies (Wang et al, NEJM 2020). We conducted a multicenter, retrospective study of pts treated with commercial brexu-cel to evaluate its safety and efficacy in the non-trial setting. Methods: We reviewed records of pts with relapsed MCL across 12 US academic medical centers. Pts who underwent leukapheresis between July 2020 and June 2021 with the intent to proceed to commercial brexu-cel were included. Baseline demographic and clinical characteristics were summarized using descriptive statistics. Survival curves were generated using the Kaplan-Meier method, and univariate models were fit to identify predictors of post-CAR T outcomes. Results: Fifty-five pts underwent leukapheresis. There were 3 manufacturing failures. Baseline characteristics of the 52 pts who received brexu-cel are summarized in Table 1. Median age was 66 yrs (range: 47-79 yrs) and 82% were male. Twenty of 29 (69%) pts with known baseline MIPI were intermediate or high risk. Seven pts had a history of CNS involvement. The median number of prior therapies was 3 (range: 2-8), including prior autologous stem cell transplant (ASCT) in 21 (40%) and prior allogeneic transplant in 2 pts (1 with prior ASCT and 1 without). Fifty percent had relapsed within 24 months of their initial therapy. All pts had previously received a Bruton's tyrosine kinase inhibitor (BTKi), including 29 (56%) with disease progression on a BTKi. Forty (77%) pts received bridging therapy (17 BTKi, 10 BTKi + venetoclax, 6 chemo, 3 venetoclax, 2 XRT only, 1 steroids only, 1 lenalidomide + rituximab). The ORR was 88% (CR 69%) among patients who received brexu-cel. Two pts had PD on initial restaging and 3 died prior to first response assessment (without evidence of relapse). Seven pts have not completed restaging due to limited follow-up (< 3 months) and were not included in the response assessment. Five pts have progressed, including 2 with CR and 1 with PR on initial restaging. With a median follow-up of 4.2 months, the estimated 6-month PFS and OS rates were 82.7% and 89.0%, respectively. All 7 pts with prior CNS involvement were alive without relapse at last follow-up. The incidence of cytokine release syndrome (CRS) was 84% (10% grade ≥ 3) with a median time to max grade of 5 days (range: 0-10 days). There were no cases of grade 5 CRS. The incidence of neurotoxicity (NT) was 57% (31% grade ≥ 3) with a median time to onset of 7 days (range: 4-15 days). NT occurred in 4/7 pts with prior CNS involvement (3 grade 3, 1 grade 4). Grade 5 NT occurred in 1 pt who developed cerebral edema and died 8 days after infusion. Thirty-five pts received tocilizumab, 33 received steroids, 7 received anakinra, and 1 received siltuximab for management of CRS and/or NT. Post-CAR T infections occurred in 8 pts, including two grade 5 infectious AEs (covid19 on day +80 and septic shock on day +40 after infusion). Rates of grade ≥ 3 neutropenia and thrombocytopenia were 38% and 37%, respectively. Among pts with at least 100 days of follow-up and lab data available, 5/34 (15%) had persistent grade ≥ 3 neutropenia and 4/34 (12%) had persistent grade ≥ 3 thrombocytopenia at day +100. Five pts have died, with causes of death being disease progression (2), septic shock (1), NT (1), and covid19 (1). Univariate analysis did not reveal any significant associations between survival and baseline/pre-CAR T MIPI, tumor pathologic or cytogenetic features, prior therapies, receipt of steroids/tocilizumab, or pre-CAR T tumor bulk. Conclusions: This analysis of relapsed MCL pts treated with commercial brexu-cel reveals nearly identical response and toxicity rates compared to those reported on ZUMA-2. Longer follow-up is require to confirm durability of response, but these results corroborate the efficacy of brexu-cel in a population of older adults with high-risk disease features. While all 7 pts with prior CNS involvement are alive and in remission, strategies to mitigate the risk of NT in this setting need to be evaluated. Further studies to define the optimal timing of CAR T, bridging strategies, and salvage therapies for post-CAR T relapse in MCL are warranted. [Formula presented] Disclosures: Gerson: TG Therapeutics: Consultancy;Kite: Consultancy;Abbvie: Consultancy;Pharmacyclics: Consultancy. Sawalha: TG Therapeutics: Consultancy, Research Funding;Celgene/BMS: Research Funding;BeiGene: Research Funding;Epizyme: Consultancy. Bond: Kite/Gilead: Honoraria. Karmali: Janssen/Pharmacyclics: Consultancy;BeiGene: Consultancy, Speakers Bureau;Morphosys: Consultancy, Speakers Bureau;Takeda: Research Funding;Genentech: Consultancy;AstraZeneca: Speakers Bureau;Roche: Consultancy;Karyopharm: Consultancy;Epizyme: Consultancy;Kite, a Gilead Company: Consultancy, Research Funding, Speakers Bureau;BMS/Celgene/Juno: Consultancy, Research Funding;EUSA: Consultancy. Torka: TG Therapeutics: Membership on an entity's Board of Directors or advisory committees. Chow: ADC Therapeutics: Current holder of individual stocks in a privately-held company, Research Funding;AstraZeneca: Research Funding. Shadman: Abbvie, Genentech, AstraZeneca, Sound Biologics, Pharmacyclics, Beigene, Bristol Myers Squibb, Morphosys, TG Therapeutics, Innate Pharma, Kite Pharma, Adaptive Biotechnologies, Epizyme, Eli Lilly, Adaptimmune, Mustang Bio and Atara Biotherapeutics: Consultancy;Mustang Bio, Celgene, Bristol Myers Squibb, Pharmacyclics, Gilead, Genentech, Abbvie, TG Therapeutics, Beigene, AstraZeneca, Sunesis, Atara Biotherapeutics, GenMab: Research Funding. Ghosh: Genentech: Research Funding;Pharmacyclics LLC, an AbbVie Company: Consultancy, Honoraria, Research Funding, Speakers Bureau;Karyopharma: Consultancy, Honoraria;Seattle Genetics: Consultancy, Honoraria, Speakers Bureau;Janssen: Consultancy, Honoraria, Speakers Bureau;TG Therapeutics: Consultancy, Honoraria, Research Funding;Incyte: Consultancy, Honoraria;Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau;Genmab: Consultancy, Honoraria;Epizyme: Honoraria, Speakers Bureau;Bristol Myers Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau;AstraZeneca: Consultancy, Honoraria, Speakers Bureau;ADC Therapeutics: Consultancy, Honoraria;Adaptive Biotech: Consultancy, Honoraria;AbbVie: Honoraria, Speakers Bureau. Moyo: Seattle Genetics: Consultancy. Fenske: TG Therapeutics: Consultancy, Speakers Bureau;Servier Pharmaceuticals: Consultancy;Seattle Genetics: Speakers Bureau;Sanofi: Speakers Bureau;Pharmacyclics: Consultancy;MorphoSys: Consultancy;Kite (Gilead): Speakers Bureau;KaryoPharm: Consultancy;CSL Therapeutics: Consultancy;Bristol-Myers Squibb: Speakers Bureau;Biogen: Consultancy;Beigene: Consultancy;AstraZeneca: Speakers Bureau;ADC Therapeutics: Consultancy;Adaptive Biotechnologies: Consultancy;AbbVie: Consultancy. Grover: Genentech: Research Funding;Novartis: Consultancy;ADC: Other: Advisory Board;Kite: Other: Advisory Board;Tessa: Consultancy. Maddocks: Seattle Genetics: Divested equity in a private or publicly-traded company in the past 24 months;BMS: Divested equity in a private or publicly-traded company in the past 24 months;Pharmacyclics: Divested equity in a private or publicly-traded company in the past 24 months;Novatis: Divested equity in a private or publicly-traded company in the past 24 months;Janssen: Divested equity in a private or publicly-traded company in the past 24 months;Morphosys: Divested equity in a private or publicly-traded company in the past 24 months;ADC Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months;Karyopharm: Divested equity in a private or publicly-traded company in the past 24 months;Beigene: Divested equity in a private or publicly-traded company in the past 24 months;Merck: Divested equity in a private or publicly-traded company in the past 24 months;KITE: Divested equity in a private or publicly-traded company in the past 24 months;Celgene: Divested equity in a private or publicly-traded company in the past 24 months. Jacobson: Kite, a Gilead Company: Consultancy, Honoraria, Other: Travel support;Humanigen: Consultancy, Honoraria, Other: Travel support;Celgene: Consultancy, Honoraria, Other: Travel support;Pfizer: Consultancy, Honoraria, Other: Travel support, Research Funding;Lonza: Consultancy, Honoraria, Other: Travel support;AbbVie: Consultancy, Honoraria;Precision Biosciences: Consultancy, Honoraria, Other: Travel support;Novartis Pharmaceuticals Corporation: Consultancy, Honoraria, Other: Travel support;Nkarta: Consultancy, Honoraria;Axis: Speakers Bureau;Clinical Care Options: Speakers Bureau. Cohen: Janssen, Adaptive, Aptitude Health, BeiGene, Cellectar, Adicet, Loxo/Lilly, AStra ZenecaKite/Gilead: Consultancy;Genentech, Takeda, BMS/Celgene, BioInvent, LAM, Astra Zeneca, Novartis, Loxo/Lilly: Research Funding.

2.
Clinical Cancer Research ; 26(18 SUPPL), 2020.
Article in English | EMBASE | ID: covidwho-992099

ABSTRACT

Background: New York City has been at the epicenter of the SARS-CoV-2 (COVID-19) pandemic.Immunocompromised cancer patients may be more vulnerable to COVID-related morbidity and mortality. Theobjectives of this study were to determine if patients with cancer have worse outcomes compared to their noncancercounterparts and to identify potential demographic and clinical predictors of morbidity and mortality among cancerpatients. Methods: We used data from a retrospective observational cohort of adult patients who tested positive for COVID-19 at New York-Presbyterian hospitals between March 3 and April 25, 2020. Patients with active cancer werematched 1:4 to noncancer controls on age, gender, and diabetes status. Using Kaplan-Meier curves and the log-rank test, we compared morbidity (intensive care unit admission and intubation) and mortality outcomes betweencancer patients and controls. We identified demographic and clinical predictors of worse outcomes using CoxProportional Hazard models. Hazard ratios and 95% confidence intervals were calculated for all estimates. Results: We included 445 COVID-19 positive adult patients of whom 89 had active malignancy. Among cancerpatients, the median age was 72 years, 54% were male, and 52% were non-white. Presenting symptoms weresimilar between cancer and noncancer groups. Nearly half of cancer patients were on active treatment includingcytotoxic and immunosuppressive therapy, and 40.9% of patients received cytotoxic treatment within 90 days ofadmission. Both patients with and without cancer received hydroxychloroquine in similar proportions (64% vs.65.5%), and more cancer patients received remdesivir (7.9% vs. 3.7%). Overall, age (HR 1.14;95% CI 1.00-1.29;p=0.049), male sex (HR 1.43;95% CI 1.04-1.96, p=0.07), dyspnea on presentation (HR 1.81, 95% CI 1.3-2.58;p=0.0005), and bilateral lung infiltrates (HR 1.94;95% CI 1.30-2.89;p=0.001) were associated with worseoutcomes. Observed complications were similar for cancer and noncancer patients, including myocardial infarction(3.4% vs. 4.2%), vasopressor requirements (24.7% vs. 26.2%), bacteremia (9% vs. 10.4%), and venousthromboembolic events (7.9% vs. 7.3%), respectively. There were no statistically significant differences in morbidityor mortality between cancer and noncancer patients (p=0.287). Conclusion: We demonstrate that COVID-19 hospitalized patients with active malignancies have comparablemorbidity and mortality to patients without cancer. In contrast to previous findings, we observed no differences in riskof ICU admission, intubation, or death between cancer and noncancer patients. Our findings suggest that activemalignancy may not be a contributive risk factor in comparison to other significant comorbidities that may be moreresponsible for the unfavorable prognosis of COVID-19 in cancer patients. We should consider the consequences oflimiting care for cancer patients on cancer-specific outcomes and mortality in the context of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL